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Coupling of Massless Particles to Scalar Fields 

H a r t m u t  F r o m m e r t  1 

Received August 21, 1996 

It is investigated whether massless particles can couple to scalar fields in a 
special-relativistic theory with classical particles. The only possible obvious 
theory which is invariant under Lorentz transformations and reparametrization 
of the affine parameter leads to trivial trajectories (straight lines) for the massless 
case, and also the investigation of the massless limit of the massive theory shows 
that there is no influence of the scalar field on the limiting trajectories. On the 
other hand, in contrast to this result, it is shown that massive particles are 
influenced by the scalar field in this theory even in the ultrarelativistic limit. 

1. I N T R O D U C T I O N  

In the context of  light deflection in gravitational fields, it has been 
pointed out that within the Newtonian theory of gravity (i.e., gravity as a scalar 
field), energy conservation arguments lead to effects on light propagation [see 
Soldner (1801), reprinted and discussed by Lenard (1921)]. This can be seen 
more fundamentally by considering classical particles, massive or massless, 
which propagate with light velocity c through a scalar field acting on them 
in the absolute Newtonian spacetime. 

Going over to the special-relativistic Minkowskian spacetime, the situa- 
tion changes, as in this case there occurs a fundamental difference between 
massive and massless particles with respect to their propagation. Within this 
theoretical framework it is no longer clear whether massless particles can 
couple to scalar fields at all. 

That such a coupling is impossible has been claimed occasionally, but 
without rigid proof, even in some textbooks (e.g., Greiner and Rafelski, 
1989). It is also of interest with respect to particle physics, where the Higgs 
mechanism is used to generate mass by a scalar field, implying that coupling 
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to the scalar Higgs field occurs only for massive particles [more accurately, 
even to the masses of the particles; this interaction has been studied in detail 
by Dehnen and Frommert (1990, 1991; Dehnen et al., 1990)]. However, on 
the field-theoretic level, it is possible to add coupling to massless particle 
fields by hand, provided only that the scalar field has a trivial ground state; 
it is simply that such an interaction has not been found in nature and therefore 
can be very weak at best. 

In order to investigate whether massless particles can couple to scalar 
fields in a special-relativistic theory with classical particles, it is most conve- 
nient to find a Lagrange function (and thus a theory) which is invariant under 
Lorentz transformations and reparametfization of the affine parameter which 
replaces time in special-relativistic theories. 2 As outlined in this work, there 
is only one possible obvious theory of coupling relativistic particles to scalar 
fields which matches these requirements. This theory turns out to be trivial 
for the case of massless particles, i.e., the trajectories of lightlike particles 
are straight lines. Moreover, the investigation of the massless l imit  of the 
more general theory shows that there is no influence of the scalar field on 
the limiting trajectories. This result reproduces the well-known fact that 
because of the observed light deviation in gravitational fields, gravity cannot 
be described correctly by a special-relativistic scalar theory in flat Minkow- 
skian spacetime. 

On the other hand, one may suspect that the problem of massless particles 
may be correlated in some way with the relativistic limit of the massive 
problem. This limit is also investigated here. In contrast to the result above, 
it turns out that massive particles are deflected by the scalar field in this 
theory even in the ultrarelativistic limit, i.e., V ---> c. 

2. LAGRANGE FUNCTIONS FOR R E L A T M S T I C  PARTICLES 

According, e.g., to Greiner and Rafelski (1989, equation (98)) or Lindner 
(1994), the special-relativistic Lagrange function for a massive,  free classical 
particle (i.e., "test body") is given by 3 

L = -moc,v/V~V ~" (1) 

which must be inserted into the action principle 

S = S(tl,  t2) = L dt 
1 

(2) 

2If it should turn out to be impossible to find such a Lagrange function, one has to select a 
set o f  equations of  motion by hand and to face all the problems which arise in such theories. 

3too: Rest mass; c: light velocity, t: time; ( . . . )"  = (d/dO(...); V~: 4-velocity (V~ = R~). 
Convention: -%~ = diag(+ - - - ) .  
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This action is invariant under both Lorentz and Poincar6 transformations, 
and reparametrization of the "parameter" t as L dt  may be rewritten with the 
proper time x as parameter as L dt  = - m o  dr. 

From this action the (vector-valued) Euler-Lagrange equation follows 
via Hamilton's variation procedure 

w = o (3) 

which is the equation of motion for a (relativistic) free particle. It may be 
evaluated as 

- ~ X .  2 = ~ - X . ~ X ~ I ~  = 0  (4) 

It is remarkable that because of the projector, there are only three nontrivial 
independent components of this equation (scalar equations): Contraction with 
V~ = X~ yields identically zero. Equation (3) may also be contracted with 
u~, = VJ-V~/~V~ to yield u~u~ = const ~ {0, --- 1 }. 

One may straightforwardly add, e.g., electromagnetism (as an external 
field) by adding an interaction term in the following way4: 

L = -mocq/-Q~V ~ + q A ~ V  ~ (5) 

yielding the equations of motion for a massive particle in the electromag- 
netic field: 

-dt V ~ = - q F ~ V  ~ (6) 

with the usual electromagnetic field strength Fsv = A~, t, - A~,,v. This is, of 
course, the usual Lorentz force equation for a classical point particle. As F~, 
is skew symmetric, contraction with V" makes both sides of (6) vanish 
identically, so we have again only three independent nontrivial equations. 

We remark here immediately that if A~ were the 4-gradient of a scalar 
field (or that of some functional of arbitrary fields), say ~(x), the right-hand 
side would vanish identically because of the antisymmetry of the field strength 
F~.  Therefore, the coupling of gradients to a particle via a potential energy 
term in the Lagrange function, 

Li = diJ, t~Vl~ 

4Ap: Electromagnetic 4-potential; q: electromagnetic (i.e., electric) charge. 
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does not contribute to the force on the particle. This may be seen on a more 
fundamental level: The term yields a pure "surface" term in the action: 

Itt2 fx(t2) 
Si  = L i  d t  = ~,~ dx ~ = ~ ( x ( t 2 ) )  - ~ ( X ( t l ) )  

I J~;x(tt) 

which is constant if the standard convention of vanishing variations at tl and 
t2 is obeyed. For this reason the coupling to scalar fields must be done in a 
different way. 

For m a s s l e s s  fields the Lagrange function has to be modified: The rest 
mass m0 must be avoided because it is identically zero. Therefore, we replace 
the factor m o c ,  which is a "rest momentum," by another, equivalent constant, 
namely h/k, i.e., an inverse characteristic wavelength up to a factor h (for 
massive particles, the wavelength k is the Compton wavelength). 

In view of the reparametrization invariance of our theory, which is 
required if we demand the incorporation of space and time into spacetime, 
as usual in (special and general) relativity, the coordinate time t can no longer 
play a unique role in our theory: Therefore, the time t in our action can be 
replaced by any continuous and monotonic parameter k along the curve: t 
---> k(t). Then the velocity V ~' = d x ~ l d t  is replaced by 

dx~ pl z = 
dk 

It will be convenient in the following to choose the parameter k in such a 
way that 

dx~ V~ 
e l k  = k d t ,  v ~" - - -  - (7) 

dk k 

Then the Lagrange function and the action take the form 

= �9 = L d k  ( 8 )  L = S , 

3. COUPLING SCALAR FIELDS TO RELATIVISTIC 
PARTICLES 

Since the simplest possibility, i.e., adding to the Lagrange function a term 

Li  = q~P,~ V ~ 

fails as outlined above, we must look for other couplings. In order to keep 

SThis demand is forcing for massless particles, as there is no natural invariant parameter for 
them, such as the proper time for massive particles. 
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the invariance of  the action with respect to (arbitrary) reparametrization, the 
relation Li -- l/arA must be kept. This leads to a first ansatz 

Z i : -hf(~p,  dp~ . . . .  )x/v~v ~ (9) 

and thus the total Lagrange function 

L = -hF(~P, dp,~ . . . .  )~/v~v ~ (10) 

with F = 1 + f,  or (see, e.g., Misner et al., 1973) 

L = - he ~ x/v~v ~ (11) 

with ~b = In F. Since the scalar field was in no way fixed otherwise on this 
level, we may now regard ~b as our new scalar field, or scalar potential. This 
will be justified later by the analogy of the equation of motion to the Newton- 
ian equation with a scalar potential. 

Now we take a closer look on the Lagrange function for classical massless 
particles. The general one-particle Lagrange function L(x ~, v ~) may be 
expanded in powers of  v~: 

L = 1o + (ll)~v ~ + (12)~v~v ~ + . . . .  ~ ( l n ) ~ l . . . ~ n V  vq " ' "  V ~n (12) 
n = 0  

Reparametrization invariance then requires 

(f.)~,...~n(x ~) 
( ln )~v . .~ , -  (v~v,~)(n_l)/2 (13) 

As masslessness corresponds to the condition v~v ~ = 0, one is led to the 
conclusion that the power series (12) must stop after n = 1, because otherwise 
divergences in L would appear (in the form of zero denominator terms). Then 
equation (11) is the most general Lagrange density possible for a classical 
particle interacting with a scalar field. 6 

Variation of  the Lagrange function (11) with respect to the particle 
trajectory yields the vector-valued equation of  motion 

d ( e*v~ ~ 
0 = e ' l ' ~ d p , ~  - ~ \ vx/~xvh j (14) 

6The arguments given here are certainly valid for straightforwardly formed Lagrange functions 
such as those discussed here. It is, however, difficult to know in general whether it is possible 
to find within special relativity some strange coupling term as a counterexample or not. One 
might think, e.g., of replacing the Minkowski metric under the root factor (~vgv~) ~/2 by 
some gg~ = -%~ + h~(qb). This, however, would lead at least to the limits if not out of 
special relativity. 
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which can be rewritten as 

( 0 = e ~ ~(vxv~)3/2 ( v ~ v ~  - v~v ~) VpVP~,~ - "q~p d h 2 j  (15) 

As the exponential factor is positive, the rest of the equation must vanish. 
Now with v ~ a zero vector, we have a zero denominator, which may cause 
difficulties in handling this equation: the numerator must be an "even smaller" 
zero to satisfy it. This requirement can be fulfilled, because the third and 
fourth factors of equation (15) simplify for v~v ~ --~ O, so that the equation 
takes the form 

d2x ~ 1 d 
0 = v~v~'q~p d k  2 - v~ ~ ~ (v~v ~) (16) 

which has reduced to the f r ee  relativistic equation of motion, and has the 
solution 

v~v ~ = const (17) 

This shows that (1) the solution v~v ~ = 0 is stable (massless particles always 
propagate in a lightlike manner), and (2) a massless particle is apparently 
not influenced by the scalar field ~b. 

The latter statement can also be seen directly from the last factors of 
equation (15), which can be resolved to 

( v~v~d2x~ ( v~v.~lvpvp~ ~ v~v K] ~ =  ~ -  vKv / ' 
(18) 

where obviously the fight-hand side (the 4-force) goes to zero with v,v  ~. It 
may even be guessed when looking again at the Lagrange function (11), 
which vanishes together with v~v ~, regardless of the behavior of d~. 

To provide a better understanding of the situation we encounter here, 
we perform a more accurate investigation of the massless problem as a certain 
limit of the massive one. This can be accomplished in two ways: 

1. Let the mass m0 go to zero, m0 ~ 0, while the energy 

E = p~ = moc2/x/l - ( V / c )  2 

stays finite ("semiconstant") 
2. For fixed mo let the (3-) velocity V approach c 
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3.1. The Zero-Rest-Mass Limit 

In the first case, we consider the problem with any fixed, small, finite 
mass m and choose the "affine" parameter h in such a way that v ~ = 
dx~/d'h is the 4-momentum p~ of the test particle, i.e., 

dx~ dx~ d'r 
v ~" - - p ~  = moV ~ = mo d'r ' d k  = - -  (19) 

dh m0 

We have 

v"v~ k d h ]  = m~ = const (20) 

so that the equation of motion (14) reads 

= moe~,dp,~ (21) 

or, multiplied by m0, 

- ~  e* = - ~  ( e ' p " )  = mo2e~'dp "~ (22) 

Going now to the massless limit, i.e., mo ---> 0, we find that this equation 
approaches 

e* = ~ (e*e ~) = 0 (23) 

where ,,=0,, indicates equality in the limit mo ---> 0. Thus, in our limit, the 
product of  the 4-momentum p~ of  the particle with the exponential function 
e ~' of  the potential ~b at the particle's location becomes a constant of motion: 

e~,p ~ o P~ = const = p~l~,=0, P~ =~ p~e_~, (24) 

Investigating now the zeroth component of the 4-momentum, the energy 
E = p0, we have 

o E pO p 0 e - ,  

from which we can obtain an expression for e*: 

e ,  o P ~  P~ 
pO E (25) 
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which may be inserted into the equation for the spatial components pi, i 
= 1 . . . . .  3: 

pi o pie_,b _ E P  i 
pO (26) 

Separating the direction n i of the 3-momentum pi from its length p according 
to (summation over i = 1 . . . . .  3 implied here) 

p i =  pn  i, p = ~ ,  nin i =  1 (27) 

we find that the original equation (24) takes the form 

Pni o pie_ 4 (28) 

which enforces on pi a decomposition 

pi = pn  i, P = x/~7-P / (29) 

with the same n i as above, and the relation for the absolute values 

P o pe _  4 _ E P  p0 (30) 

Thus we have shown that along with the P~, the direction vector components 
n i of the 3-momentum (and thus velocity) are constants o f  motion in the 
zero-rest-mass limit, so that the flight direction is not influenced by the scalar 
field, no matter which field or particle configuration is assumed. 

3.2.  T h e  Ul trare la t iv i s t i c  (V  --> c)  Limit  

Leaving m0 now fixed, we have the equation of motion (14), and can 
again choose the parameter k so that 

d~ 
dk = - - ,  v ~ = p~ 

m0 

as above (19). The resulting equation of motion is again (22): 

~-~ e~'-d-- ~- = mo2e*dp '~ (31) 

which has again only three independent and one trivial component (this can 
be seen by contracting with e4p~ and using p~p~ = m02). 

Equation (31) can be evaluated as 

d d 
p~ = (mo2-q ~ - p~p")dp,~, = m02qb ,~ - p~ ~ qb (32) 
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For the general case of  the scalar field d~, it is too complicated at this 
stage to investigate the influence on the massive particle's trajectory. However, 
this is possible for the interesting special case of  a static scalar field, i.e., 
Otd~ = dp.0 = 0; then we have from (32) for the zeroth component 

d 0 _p0 d 
p = ~-~ ~b (33) 

or  

_ 1  d 0 d d 
0 p 0 ~ P  + ~ d p =  [ln(p ~  (34) 

This equation has the constant integral (the "moc'" denominator by choice) 

ln ( -~c)  + ~b = % = coast (35) 

so that 

pO = moce~-,  (36) 

This is the energy conservation law here in its exact form. 
As the zeroth component of the 4-momentum p0 is generally given by 

p0 _ moc (37) 
41  - (V/c) 2 

this is equivalent to 

~/1  - ( V I c )  2 = e '~-~,  V = c ~ / 1  - e 2<~'-~) ( 3 8 )  

The energy conservation law can thus be rewritten as 

V z = c2(1 - e z<'~-~)) (39) 

As (VIc) z must take values in the real interval [0, 1] only, the difference dp 
- % must be negative, i.e., in the field-free (dp = 0) case, the energy constant 
% is always positive. It takes the values 

~g = 0 ~ V = 0  

= o o ~ V = c  

In the nonrelativistic limit the constant % for the field-free case corresponds to 

�9 = - g i n  1 

1 V 2 Elan 
- (40) 

2 c 2 moc 2 
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i.e., the quotient of the kinetic energy by the rest energy mo c2 (in case of a 
nonvanishing scalar field ~b, this field occurs here as a potential energy 
divided by the rest energy). 

To discuss the influence on trajectories a little more deeply, we investi- 
gate now the case of a spherically symmetric, static field. As usual, we 
have motion in a plane (say the equatorial one) and angular momentum 
conservation, in addition to the energy conservation from above. From ~b = 
d~(r) we have now ~b.~ = dfr~,  and therefore for the tangential component 
of equation (32) 

d p ,  + 1 dr ~ _p~ d 
r ~ p = ~ ~b (41) 

0_ _d d d 
rp ~ dk (rP*) + ~ dp = [ln(rp *) + dp] 

and thus 

(42) 

This equation has a constant integral corresponding to the conserved angu- 
lar momentum: 

ln(rp *) + d~ = In 9; = const (43) 

o r  

rP____~ ~ = e-~, 
9; 

As the q~-component of the 4-momentum is given by 

mot dq) 
P* = ~ / i ' -  (Vlc) 2 at 

the angular momentum law reads more explicitly 

mo r2 d~p ~/1 V 2 
9 ; d t  = ( c )  e-'~ 

or by using the energy conservation law (38) 

m0 r2 dt o = e- ~ -~- ~ = const 

r2 dq0 _ 9; e-  ~ =:  ~; = const 
dt mo 

(44) 

(45) 

(46) 

(47) 

This equation no longer depends on the scalar field d~, but only on the energy 
constant % and the new constant 9;. If consolidated to a new constant ~ ,  



Coupling of Massless Particles to Sca l a r  F ie lds  653 

this new constant resembles essentially the specific angular momentum of 
Newtonian mechanics. 

With these conservation laws in hand, one can eventually solve the 
equation for the trajectory approximately. Inserting the usual expression for 
V 2 for motion in a plane, 

V 2 = ( d r )  2 r2(dq~]  2 
+ ~-d-T] (48) ~dt] 

and the angular momentum law (47) into the energy conservation law (39), 
one obtains 

= (~;/mo) 2e-2~ _ e2,-2~g) V 2 (dr~ 2 + - cZ(1 (49) 
\ dt ] r 2 

o r  

(dr~ 2 = c2(1 - -  e 26-2~) (50 )  
(~/mo)ee -2~ 

dr/ r 2 

Equation (49) has the side result that for vanishing ~b, which can be assumed 
at spatial infinity for a field which is localized anyhow (e.g., the field of a 
localized source), the velocity takes a limiting value v~, the excess velocity, 
which is given by the relation [compare equation (39)] 

V~ 2 = C2(1 - -  e 2 4 ~ - 2 ~ )  = c2(1  - -  e - 2 ~ )  (51) 

(since ~b| must be constant, it may be absorbed in %, and thus set to zero). 
In order to obtain the trajectory instead of the time-dependent motion, 

the differential dt in equation (50) can be substituted by dr0 via the angular 
momentum law, which yields 

dr drldt e ~ dr 
- - -  - r 2 - -  ( 5 2 )  

d~p dqddt ~lmoc dt 

Substituting r by u = (~;/moc)(llr), we find that equation (50) takes the form 

( du~2 + u 2 =  e 2 ~ -  e 26 (53) 
dr] 

This equation of motion can be evaluated if the scalar field ~b is specified. 
For large distances, it is convenient to expand d~ in orders of  1/r or u, i.e. 
(with positive coefficients al ,  et2 for the attractive case, 7 

~b = - - (Ot lU "1- Or2 u2 -I- ~ ") ( 5 4 )  

e 2. = 1 - 2alu + 2(al 2 - et2)u 2 + " "  (55) 

7Having in mind  a model  for gravity, one could, e.g., set dO = - ( A i r  + f~A21r2), A ~-- GMIc 2. 
Then one has eq = mocAl~; = cAe-~/~,  et2 = ~eq 2. 
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Inserting this relation in (53), we find that this equation reads, expanded up 
to the order u 2, 

( du~ 2 = (e 2z - 1) + 2~qu - (1 + 2Otl 2 - 2~2)u 2 + (~(u 3) (56) 

This trajectory equation is solved by the following trajectory, up to the 
order u2: 

u = Uo{1 + �9 cos[a(ho - %)]} (57) 

with an arbitrary integration constant % (which determines the periapsis 
angle) and 

(It I 
(58) U0 

1 + 2al 2 -- 2a2 

= / 4  1 +  1 (e2~_ 1)(1 +2cxl 2 - 2 a 2 )  (59) 
~Xl 2 

a = x/l + 2al  2 - 20t2 (60) 

(u0 determines the periapsis, or size of the trajectory, e is the eccentricity 
and determines its shape, while a describes the rotation of the trajectory). 
The proper trajectory equation eventually reads, with these quantities, 

ro(1 + r 
r = (61) 

1 + ~ cosla(~p - %)1 

with the periapsis ro = ~/[mocuo(1 + ~)]. The expression for �9 equation 
(59), can be reformulated to show that it approaches infinity for increasing 
~g, corresponding to V --~ c: 

{[( - ) 1/2 e t 2 . _  + et2 j j j  (62) e = e  ~ 2 1 + - -  e -2~ 
Otl 2 )]'o 

--~ e e 2 1 + - - -  = e  ~ ~ (63) 
I~12 I~ 1 

This means that the trajectory's form approaches a straight line with increasing 
%, or as V approaches c. 

It would be preposterous to conclude from this fact that there is no 
deflection of the fast, massive particle. The asymptotic straight lines for r 
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oo are to be calculated as follows: The trajectory goes to asymptotic infinity 
at the poles of the denominator, i.e., at cos{a(~0 - ~Po)} = - l / e ,  or 

. . . .  arccos - (64) 
a 

The deflection angle O is related to 8q~ by 

O = 2~cp - ,r 

Thus 

= - + a r c s i n  - 7 r  
a 

__ =( :_ , )  

(65) 

+aarCsin  e -~ 2 1 +  or2 ] e -2~ + ~l 2 ) j j  ) (66) 

For the large % considered, the argument of the arcsin function is small, and 
thus the function arcsin x is well approximated by x. Then the deflection 
angle goes to 

0 ~ , ~  a _  1 + k  
a (1 + (ct2+ l/2)/cq 2) - e-2~(1/2 + (oc2 + 1/2)/Otl 2) 

1 ) 2 t x l e  - ~  
+ 

and approaches s 

(67) 

for large values of  %, corresponding to the limit V --~ c [compare equation 
(40)]. This nonvanishing deflection is the result of  a preceding straight trajec- 

aUsing  the model  sketched in footnote 7, we obta in  for  the l imit ing deflect ion angle  

Oc = "n'{1 - l/[1 + 2tx12(1 - [3)] It2 } ~ "rreq2(l - ]3) = 'n'(l - ~)(mocA/~;) 2 
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tory caused by a trajectory "dragging" of the scalar interaction for massive 
particles, which is essentially the same effect which can be observed as the 
periapsis shift for bound elliptical trajectories. 
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